K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNγ-Stimulated Human Cells
نویسندگان
چکیده
Toxoplasma gondii is the most common protozoan parasitic infection in man. Gamma interferon (IFNγ) activates haematopoietic and non-haematopoietic cells to kill the parasite and mediate host resistance. IFNγ-driven host resistance pathways and parasitic virulence factors are well described in mice, but a detailed understanding of pathways that kill Toxoplasma in human cells is lacking. Here we show, that contrary to the widely held belief that the Toxoplasma vacuole is non-fusogenic, in an immune-stimulated environment, the vacuole of type II Toxoplasma in human cells is able to fuse with the host endo-lysosomal machinery leading to parasite death by acidification. Similar to murine cells, we find that type II, but not type I Toxoplasma vacuoles are targeted by K63-linked ubiquitin in an IFNγ-dependent manner in non-haematopoetic primary-like human endothelial cells. Host defence proteins p62 and NDP52 are subsequently recruited to the type II vacuole in distinct, overlapping microdomains with a loss of IFNγ-dependent restriction in p62 knocked down cells. Autophagy proteins Atg16L1, GABARAP and LC3B are recruited to <10% of parasite vacuoles and show no parasite strain preference, which is consistent with inhibition and enhancement of autophagy showing no effect on parasite replication. We demonstrate that this differs from HeLa human epithelial cells, where type II Toxoplasma are restricted by non-canonical autophagy leading to growth stunting that is independent of lysosomal acidification. In contrast to mouse cells, human vacuoles do not break. In HUVEC, the ubiquitinated vacuoles are targeted for destruction in acidified LAMP1-positive endo-lysosomal compartments. Consequently, parasite death can be prevented by inhibiting host ubiquitination and endosomal acidification. Thus, K63-linked ubiquitin recognition leading to vacuolar endo-lysosomal fusion and acidification is an important, novel virulence-driven Toxoplasma human host defence pathway.
منابع مشابه
Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins.
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GB...
متن کاملToxoplasma gondii Sequesters Lysosomes from Mammalian Hosts in the Vacuolar Space
The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attract...
متن کاملLocalisation of macrophage lysosomal enzyme in experimental toxoplasma retinitis.
Rabbit retinal tissue experimentally infected with Toxoplasma gondii was processed for the lysosomal enzyme aryl sulphatase. Abundant lysosomal activity was found in lysosomal bodies of the infected macrophages. There appeared to be a lack of fusion of the lysosomal bodies with the phagosomes containing the organisms. Examination of the majority of macrophage vacuoles containing trophozoites fa...
متن کاملA Cell Cycle-Regulated Toxoplasma Deubiquitinase, TgOTUD3A, Targets Polyubiquitins with Specific Lysine Linkages
The contribution of ubiquitin-mediated mechanisms in the regulation of the Toxoplasma gondii cell cycle has remained largely unexplored. Here, we describe the functional characterization of a T. gondii deubiquitinase (TGGT1_258780) of the ovarian-tumor domain-containing (OTU) family, which, based on its structural homology to the human OTUD3 clade, has been designated TgOTUD3A. The TgOTUD3A pro...
متن کاملpVHL Mediates K63-Linked Ubiquitination of nCLU
pVHL, product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase that targets proteins for ubiquitination and proteasomal degradation. Hypoxia-inducible factor α (HIFα) is the well-known substrate of pVHL. Besides HIFα, pVHL also binds to many other proteins and has multiple functions. In this manuscript, we report that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016